ML 함수도움말
라이브러리 검색
옵션
대소문자 구분
유형
전체
제목
코드
표
그림
본문
파트 I.
I/O
1.
DLLoad
1.1
Format
1.2
Description
1.3
Properties
1.4
Constraints
1.5
Example
2.
Image Data Generator
2.1
Format
2.2
Description
2.3
Properties
2.4
Constraints
2.5
Example
3.
Output
3.1
Format
3.2
Description
3.3
Properties
3.4
Constraints
3.5
Example
파트 II.
Core Layer
4.
Dense
4.1
Format
4.2
Description
4.3
Properties
4.4
Constraints
4.5
Example
5.
Activation
5.1
Format
5.2
Description
5.3
Properties
5.4
Constraints
5.5
Example
6.
Dropout
6.1
Format
6.2
Description
6.3
Properties
6.4
Constraints
6.5
Example
7.
Flatten
7.1
Format
7.2
Description
8.
PythonScript
8.1
Format
8.2
Description
8.3
Properties
8.4
Constraints
8.5
Example
9.
Reshape
9.1
Format
9.2
Description
9.3
Properties
9.4
Constraints
9.5
Example
10.
Lambda
10.1
Description
10.2
Properties
10.3
Constraints
10.4
Example
파트 III.
Convolution Layer
11.
Convolution 1D
11.1
Description
11.2
Properties
11.3
Constraints
11.4
Example
12.
Convolution 2D
12.1
Format
12.2
Description
12.3
Properties
12.4
Constraints
12.5
Example
13.
Convolution 3D
13.1
Description
13.2
Properties
13.3
Constraints
13.4
Example
14.
Convolution 2D Transpose
14.1
Description
14.2
Properties
14.3
Constraints
14.4
Example
15.
Separable Conv2D
15.1
Description
15.2
Properties
15.3
Constraints
15.4
Example
16.
ZeroPadding1D
16.1
Description
16.2
Properties
16.3
Constraints
16.4
Example
17.
ZeroPadding2D
17.1
Description
17.2
Properties
17.3
Constraints
17.4
Example
18.
ZeroPadding3D
18.1
Description
18.2
Properties
18.3
Constraints
18.4
Example
19.
Cropping1D
19.1
Description
19.2
Properties
19.3
Constraints
19.4
Example
20.
Cropping2D
20.1
Description
20.2
Properties
20.3
Constraints
20.4
Example
21.
Cropping3D
21.1
Description
21.2
Properties
21.3
Constraints
21.4
Example
22.
UpSampling1D
22.1
Description
22.2
Properties
22.3
Constraints
22.4
Example
23.
UpSampling2D
23.1
Description
23.2
Properties
23.3
Constraints
23.4
Example
24.
UpSampling3D
24.1
Description
24.2
Properties
24.3
Constraints
24.4
Example
파트 IV.
Pooling Layer
25.
MaxPooling1D
25.1
Description
25.2
Properties
25.3
Constraints
25.4
Example
26.
MaxPooling2D
26.1
Format
26.2
Description
26.3
Properties
26.4
Constraints
26.5
Example
27.
Global Average Pooling 2D
27.1
Format
27.2
Description
27.3
Properties
27.4
Constraints
27.5
Example
28.
Average Pooling 2D
28.1
Format
28.2
Description
28.3
Properties
28.4
Constraints
28.5
Example
파트 V.
Application Layer
29.
Inception Res Net V2
29.1
Format
29.2
Description
29.3
Properties
29.4
Constraints
29.5
Example
30.
Inception V3
30.1
Format
30.2
Description
30.3
Properties
30.4
Constraints
30.5
Example
파트 VI.
Recurrent Layer
31.
GRU
31.1
Format
31.2
Description
31.3
Properties
31.4
Constraints
31.5
Example
32.
RNN
32.1
Description
32.2
Properties
32.3
Constraints
32.4
Example
33.
LSTM
33.1
Description
33.2
Properties
33.3
Constraints
33.4
Example
파트 VII.
Advanced Activations Layer
34.
LeakyReLU
34.1
Format
34.2
Description
34.3
Properties
34.4
Constraints
34.5
Example
35.
ELU
35.1
Description
35.2
Properties
35.3
Constraints
35.4
Example
파트 VIII.
Merge Layer
36.
Add
36.1
Description
36.2
Properties
36.3
Constraints
36.4
Example
37.
Concatenate
37.1
Description
37.2
Properties
37.3
Constraints
37.4
Example
파트 IX.
Normalization Layer
38.
Batch Normalizaion
38.1
Description
38.2
Properties
38.3
Constraints
38.4
Example
파트 X.
Embedding Layer
39.
Embedding
39.1
Description
39.2
Properties
39.3
Constraints
39.4
Example
파트 XI.
Applications
40.
VGG16
40.1
Description
40.2
Properties
40.3
Constraints
40.4
Example
41.
ResNet50
41.1
Description
41.2
Properties
41.3
Constraints
41.4
Example
Brightics ML v4.0 Functional _Deep Learning